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LETTER TO THE EDITOR 

A field theory of dislocation mediated melting in two 
dimensions 

A Houghton? and M C OgilvieSO 
Department of Physics, Brown University, Providence, Rhode Island, 02912 USA 

Received 13 August 1980 

Abstract. It is shown that the theory of dislocation mediated melting in two dimensions is 
equivalent to a coupled vector sine-Gordon field -theory. A systematic renormalisation 
group method for studying the transition is given. Recursion relations are obtained to 
second order in the dislocation activity for the case of melting on a periodic substrate. 

In this Letter we point out that the theory of dislocation mediated melting in two 
dimensions (Kosterlitz and Thouless 1973, Halperin and Nelson 1978, Nelson and 
Halperin 1979, Young 1979) is equivalent to a coupled vector sineGordon field 
theory. Therefore, a systematic renormalisation group method for studying the melting 
transition can be developed along the lines of that given by Amit et a1 (1980) for the 
two-dimensional sine-Gordon theory (planar model, Coulomb gas). Recursion rela- 
tions are obtained, to second order in the dislocation activity, for the general case of 
melting on a periodic substrate and found to agree with the results of Young (1979). It 
is relatively straightforward to generalise the calculations to higher order. 

The energy of the dislocation system HD is given by continuum elasticity theory 
(Nabarro 1967). Defining Ho = - HD/kT,  we have 

~ ~ = 2 r r  [ ~ k ( b ’ .  6’) ln(r”/ao)-K~[(b’ .  r’’)(b’.  r L ’ ) / ( r z ’ ) 2 - i ( b 1 .  b’)II+ln y o C  (b’)’. 

(1) 
Here r” = rl - r’ denotes the position of the ith dislocation with dimensionless Burgers 
vector b,, In yo  is related to the core energy and a. is the lattice spacing. The dislocations 
are located on the sites of a dual lattice (which is hexagonal if the original lattice is 
triangular) and satisfy the neutrality condition 2,, b, = 0. For an idealised ‘floating’ solid 
the coupling constants are equal, Kb = K: = KO and 
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where po and BO are the shear and bulk moduli in the absence of dislocations; however, 
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in the general case when melting takes place on a substrate Kb # K :  (Nelson and 
Halperin 1979). The Burgers vectors b’ lie on a Bravais lattice 6’ = “61 +ai&,  m‘ and 
n are integers and and ê z are unit vectors spanning the lattice. We will be concerned 
with the hexagonal lattice ê l . = -a. As only those dislocations with Burgers vectors 
of unit length are relevant, it will be convenient to introduce a triad of Bravais lattice 
vectors tZ and e^3 which satisfy 

(3) 1 ê ’ 2j = ~ ( 3 S j j  - 1). 

A standard choice is 

As we are concerned with large-distance behaviour, we may make a continuum 
approximation, allowing the vectors to be at any position rather than confined to lattice 
sites. The underlying lattice appears through the restriction that no two vectors may be 
closer than the lattice spacing a. which is necessary for stability. We therefore obtain a 
vector Coulomb gas with a hard-core repulsive interaction at short distances. 

The Fourier transform of (1) may be written conveniently as 

where the interaction between the vector charges has both transverse and longitudinal 
components, 

G (4) = (4’ + m E)-’( PT + A ~PL). (6) 

Here we have the projectors PL = qq/q2, PT = I -qq /q2 ;  the parameter A0 = KL/KT is 
the ratio of longitudinal to transverse couplings 

(7) K -1. 
T - 2(Kr + KO) 

and the mass mo has been introduced to regulate the infrared behaviour. In the case of 
the floating solid the interaction is purely transverse, A0 = 0. 

It is now straightforward to show that the vector Coulomb gas is equivalent to a 
coupled vector sine-Gordon field theory whose Lagrangian is 

Here = K,  a. is proportional to the dislocation activity, yo = (~0/2/3;, and 4 is a 
two-component vector field. The free propagator of the theory, G, which is just the 
interaction between dislocations (6) is given explicitly in coordinate space as 

which has the asymptotic form 
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for molxl<< 1. Here the lattice constant a0 has been introduced as an ultraviolet 
regulator (Amit et a1 1980) and c = e2"/4, where y is Euler's constant. To prove the 
equivalence it is sufficient to invoke a basic result of the theory of functional integration, 

/ d[qb]exp( -1 &G- '4+ i J4  (13) 

Then, expanding the partition function 

2 = / d[4] exp( - / Ld'x) 

as a power series in ao, the partition function of a vector Coulomb gas with reduced 
Hamiltonian given by ( 5 )  results. 

The discussion of the melting transition now parallels the treatment of the planar 
model given by Amit et a1 (1980). The essence of the calculation is quite simple. It is 
shown that the vector sine-Gordon theory can be renormalised near (@:/16~)(1 +Ao). 
The ultraviolet divergences of the one-particle irreducible two-point function r(2) are 
located, expanded in a double series in a. and 8 0 = ( p ~ / 1 6 ~ ) ( 1 + A O ) - 1 ,  and then 
removed by appropriate renormalisation. Having the renormalisation constants, the 
renormalisation group flows are obtained by differentiating with respect to length scale. 

The one-particle irreducible two-point function I" can be written as 

r(') = G-' + (15) 

where I is the self-energy matrix. The diagrammatic rules that allow I to be 
represented to all orders in Po but to finite order in a. are similar to those of the 
sine-Gordon theory. The only change is that the vertices are labelled by an index i 
indicating which cos(@&. 4 )  interaction occurs. The conventions are given in figure 1 
and the contributions to r(2) to order a: are shown in figure 2. It is convenient to define 
a number of new functions: 

I k l =  p ; e * k G ( X ) e * l  (16) 
B = exp[ - i l k k  (x' = o)] (17) 

Figure 1. Diagrammatic convention for the renormalised a,, vertex, and the two pro- 
pagators (cosh Z(x) - 1) and (sinh Z(x) - 1) that enter the theory. 

+ + +  + u--U r 3  - 
Figure 2. Diagrams contributing to the one-particle irreducible two-point function r(*) to 
order a;. 
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ski= sinh Iu(x )  (18) 

c k l  = cosh I k l (X ) .  (19) 
With these definitions and the notation of figures 1 and 2, we find r"'(p) to order C Y ;  as 

1 r("( p )  = ( p 2  + m;)l p PT +-P,) + 2 1 B k(f?k&) '( A .  a k  

(20) 
1 CY; +771 [(e^kSk)(Ck,(x)-l)-ei""(e*k~l)(Skl(x)-Ikl(x))l 

P O  a kl 

where (&&) is a matrix 

(gi2j)kl = (gz )k (e^ , ) l*  (21) 

The critical value of P ;  is determined by finding that value for which the renor- 
malised coupling aOBk/u;  is independent of a. (the condition that cos P ( e i .  4) is 
marginal). Equations (1 1) and (12) are combined to give B as 

B k  =[exp(P;/lG.rr)](l + A o )  ln(cm;a2) (22) 
which implies that the operator C O S @ ~ ? ~ .  4) becomes marginal when 

[(P;)C/16~1(1 +Ao) = 1. (23) 

Defining a new variable So as 

80=( /3 ; /16~) ( l+Ao) - l ,  (24) 
we may compute I: to second order in a double expansion in a. and So, focusing on the 
divergent terms. 

At leading order in a. 

I"' = $ao(cm;)[~ + S O  1n(cm2a2) + . . .]I. (25) 

It is only necessary to evaluate the divergent part of I:(2), and therefore it suffices to 

under S3, the group of permutations of the ii's, we may write the divergent part of 
consider I'2'(p2 = 0) and a 2 I (2) /apaplp2=o.  Exploiting the invariance of the Lagrangian 

The short-distance behaviour (molxl<< 1) is given by 

where Io is a modified Bessel function and 

TK' =P;(1 - A o ) / 8 ~ .  

The other divergences of I:"' are contained in 
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It is easy to see that the only divergences come from S,,(x); the result is 

x {[210( 7rK8) - 11(7rKB)]p21 + 211( d P ) p p ) .  (31)  
Combining (20) ,  (25) ,  (28)  and (31) ,  the expression for r(') to second order in (YO and SO 
is 

r(''(p2) = m~l+p2[PT+(1/Ao)PL]+~(aocm2)[1+So ln(cm&~i)]l 

- a 3 c m ' ) ( 3 7 7 / 4 ~ ~ )  e x p ( . r r ~ ~ / 2 )  In(cm20a20)I 

-ai(3.rr/32Pi) exp(.rrK') ln(cm?jag) 

x [ (210( 7rK e )  - I1 (7rK e)) PT + (210( 7rK e) + I1 (7rK ") PL]. (32)  

Renormalisation is carried out in the usual way; all divergences can be absorbed by 
three independent renormalisation constants Z,, 2, and ZA. Renormalised quantities 
are defined by 

and we require that the renormalised two-point vertex 

r%p, a, 8, m, K )  = z,r(2)(p, (YO, SO, mi, a )  (34)  

is finite, order by order in the double expansion in (Y and S ; K is a mass scale needed to 
define the renormalised theory. It is straightforward to find Z,, 2, and ZA by requiring 
that the coefficients of m2, p2PL and p2PT be finite. We find 

Z, = 1 + ( 3 ~ / 3 2 p ~ ) [ 2 1 ~ ( ~ ~ " )  - I ~ ( T K ~ ) I  ln(k2a2) 

Z,ZA = 1 + ( ~ v A / ~ ~ P ~ ) [ ~ I ~ ( T K ~ )  -11(7rKe)] ln(k2a2) 

Z, = 1 - 8  1n(k2a2)+( ( r7r /2p2)~o(w)  ln(k2a2). 

(35)  

(36)  

(37)  

The linear term in (Y arises because, unlike the planar model, the Lagrangian (10)  is not 
invariant under y + - y. Renormalisation group recursion relations are found by noting 
that the bare parameters cannot depend on the scale and differentiating with respect to 
length scale L = K -' : 



L454 Letter to the Editor 

Using (35), (36) and (37) we find the recursion relations for the transverse and 
longitudinal couplings and dislocation activity 

d K L ' /dL = 1 2 T y '[Io( TK ' ) + $11 (TK ')I 
d K  T ' / dL = 1 2 T y '[Io( TK ' ) - ;I1 ( TK ')I 

and 

dy/dL = (2 - T K ' ) ~  + ~TI~(TK ' )Y '  

are those given by Young (1979). Higher-order terms in the expansion are computable 
and will lead to universal corrections to the scaling form of correlation functions. 
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